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Abstract. For a principal bundle P //M equipped with a con-
nection Ā, we study an infinite dimensional bundle Pdec

Ā
P over

the space of paths on M , with the points of Pdec

Ā
P being hori-

zontal paths on P decorated with elements of a second structure
group. We construct parallel transport processes on such bundles
and study holonomy bundles in this setting.

1. Introduction

The focus of our study is parallel transport on bundles whose ele-
ments are paths decorated with elements of a second structure group.
Geometry of this type can be studied in the language of category theory
but in this work we focus exclusively on differential geometric aspects.
However, we shall make remarks indicating the significance of certain
notions in the category theoretic development.
We begin with a connection form Ā on a principal G-bundle π :

P //M , where G is a Lie group, and consider first the structure

πĀ : PĀP // PM : γ 7→ π ◦ γ, (1.1)

where PM is the space of smooth paths on M and PĀP the space of
Ā-horizontal smooth paths on P . Figure 1 illustrates this structure.
The group G acts on the space PĀP by right translations γ 7→ γg,

and the structure (1.1) has the essential features of a principal G-
bundle. Next we introduce a Lie group H and a semidirect product
H ⋊α G, which serves as a ‘higher’ structure group. Using these we
construct a decorated bundle

πdĀ : Pdec
Ā P = PĀP ×H // PM : (γ, h) 7→ π ◦ γ, (1.2)

where we view each pair (γ, h) as an Ā-horizontal path γ on P decorated
with an element h drawn from the second structure group H . It is
this structure, illustrated in Figure 2, that is the ultimate focus of
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Figure 1. Horizontal paths

our work in this paper. The decorated bundle arises as an example
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Figure 2. Decorated paths

of a categorical principal bundle, as developed in [11]. Briefly put,
the points of P are the objects of a category and the pairs (γ, h) are
morphisms; the source of the morphism (γ, h) is the initial point γ0 of
γ and the target is the point γ1τ(h), as shown in Figure 2.
We prove results and explain how the structure (1.2) can be viewed

as a principal H ⋊α G-bundle. Parallel transport on this bundle takes
a path on the base space PM of the form [s0, s1] //PM : s 7→ Γs, and
associates to it a path on the decorated bundle Pdec

Ā
P of the form

[s0, s1] // Pdec
Ā P : s 7→ (Γ̂s, hs),
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with a specified initial value (Γ̂s0 , hs0). This parallel transport process
is obtained by using certain 1- and 2-forms on P with values in the Lie
algebras L(H) and L(G). Given a suitable 1-form on P with values in
the Lie algebra L(H), we can associate, by a type of parallel transport
process, a special element h∗(γ) ∈ H for each path γ ∈ PĀP ; this
selects out an element

(
γ, h∗(γ)−1

)
∈ Pdec

Ā
P for each γ ∈ PĀP . We then

determine, in section 7, conditions on the 1- and 2-forms that ensure
that parallel transport of a point of Pdec

Ā
P of the form

(
γ, h∗(γ)−1

)

produces an element of the same type. This investigation is a study of
the holonomy bundle for the decorated bundle (the holonomy bundle
for a connection on a traditional finite dimensional principal bundle is
a central object in the foundational work of Ambrose and Singer [2]).
The background motivation for our work arises from trying to con-

struct a gauge theory for strings joining point particles. There is an
active literature in this area, much of it focused on category theoretic
aspects. In our recent works [10, 11] we have developed a category
theoretic framework centered on differential geometric notions such as
parallel transport over spaces of decorated paths. In the present paper
we establish a differential geometric development of the theory of con-
nections over spaces of paths. For the category theoretic perspective we
mention here the works of Abbaspour and Wagemann [1], Attal [3, 4],
Baez et al. [5, 6], Barrett [7], Bartels [8], Parzygnat [17], Picken et al.
[9, 15, 16], Soncini and Zucchini [19], Schreiber and Waldorf [20, 21],
and Wang [23, 24].

1.1. Results and organization of material. All our constructions
and results in this paper take as background a principal G-bundle π :
P //M , and a given set of connection forms and other forms on P .
We denote by PĀP the space of all paths on P that are horizontal with
respect to a connection Ā on P . Here are the highlights of what we do
in this paper:

• Section 2. We describe and study the bundle

PĀP // PM (1.3)

and explain the sense in which this is a principal G-bundle. We
also describe an explicit isomorphism between such bundles for
different connections Ā.

• Section 3. We construct a connection form ω on the bundle
(1.3), determine horizontal lifts and parallel transport with re-
spect to ω.

• Section 4. After reviewing the notion of a Lie crossed module,
which involves two Lie groups G and H , with an action of G on
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H , we describe a decorated bundle

Pdec
Ā P // PM. (1.4)

A point on the decorated bundle is of the form

(γ, h)

where γ is an Ā-horizontal path on P and h ∈ H is a ‘deco-
rating’ element attached to γ (for example, h might arise by
integration of an L(H)-valued 1-form along γ). We study the
decorated bundle and local trivializations for it.

• Sections 5 and 6. We construct a connection form Ω on the dec-
orated bundle Pdec

Ā
P . Working out the splitting of a tangent

vector to Pdec
Ā
P into horizontal and vertical components, we de-

termine horizontal lifts with respect to the connection Ω. Using
this we determine explicitly the equations for parallel transport
in the decorated path bundle.

• Section 7. Here we make an extensive examination of parallel
transport of decorated paths. We consider a special type of
decoration of a path γ, where the decorating element inH arises
by means of integration of an L(H) valued 1-form along γ.
In Proposition 7.1 we find conditions under which the parallel
transport of such a decorated path is itself decorated in the
same manner.

The main objective of this paper is to study a differential geometric
connection structure for the decorated bundles, with structure group
H ⋊G. The importance of such bundles arises from the fact that they
provide a framework for categorical principal bundles, as explained
in [11]. In section 7, we consider a special type of subbundle of the
decorated bundle with structure group be the subgroup G ofH⋊G. We
address the following question: when does a connection on the H ⋊G

bundle reduce to a connection on that special subbundle. We obtain
a curvature condition (7.10) that ensures that the connection reduces
to the subbundle. The construction in section 7 is motivated by the
classical work of Ambrose and Singer [2] on the holonomy subbundle
for a connection on a given principal G bundle.

2. A principal bundle of horizontal paths

We work with a principal G-bundle π : P //M , where G is a Lie
group, and a connection form Ā on this bundle. Our focus is on a
pair of path spaces, one a space PM of paths on M and the other a
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space PĀP of Ā-horizontal paths on P . The projection map π induces
a corresponding projection

πĀ : PĀP // PM : γ 7→ π ◦ γ,

while the right action of G on the bundle space P induces a right action
of G on PĀP that preserves the fibers of πĀ. It is this structure, clearly
analogous to a principal bundle, that we shall study. Specifying useful
topologies and smooth structures on path spaces tend to be unreward-
ing tasks, and so we will keep the involvement of such structures to
a minimum and make no attempt at formulating or using any general
framework for them. However, it is important to note what exactly
the elements of PM are. Unfortunately, even this requires a somewhat
complex articulation of features that are intuitively quite clear.

2.1. The path spaces PM and PĀP . By a parametrized path on M
we mean a C∞ map [t0, t1] //M , for some t0, t1 ∈ R with t0 < t1, that
is constant near t0 and near t1. Thus the set of all such paths is

⋃

t0,t1∈R,t0<t1

C∞

c ([t0, t1];M) , (2.1)

where the subscript c signifies the behavior near t0 and t1. If γ1 ∈
C∞
c [t0, t1] and γ2 ∈ C∞

c [t1, t2] then the composite γ2 ◦ γ1 belongs to
C∞
c [t0, t2]. It is often useful, at least for notational simplicity, to com-

pose paths that are defined on the same parameter domain [t0, t1]. With
this in mind, we introduce the quotient set PM obtained by identi-
fying paths that differ by a time-translation reparametrization. Thus,
γ : [t0, t1] //M is identified with γ+a : [t0−a, t1−a] //M : t 7→ γ(t+a)
in PM , for any a ∈ R; this means that the parametrized paths γ and
γ+a correspond to the same element in PM . We will usually not make
a notational distinction between γ and its equivalence class [γ] of such
time-translation reparametrizations. We will then use the term ‘path’
to refer to an equivalence class such as this. Many important construc-
tions are invariant under a far larger class of reparametrizations but at
this stage we find it more convenient to keep the reparametrizations to
a minimum.
We will not use a specific topology on PM . Any topology of use in

our context should (i) be Hausdorff , (ii) the initial and terminal points
should be continuous functions of the path, and (iii) composition

(γ, δ) 7→ δ ◦ γ,

on the subset of PM ×PM where defined, should be continuous.
Following the notational convention for PM we denoted by PĀP the

set of all Ā-horizontal parametrized paths on P , where Ā is our given
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connection form. Thus, an element γ ∈ PĀP is represented by a C∞

mapping [t0, t1] // P , for some t0 < t1 in R, constant near t0 and t1,
such that

Ā
(
γ′(t)

)
= 0 for all t ∈ [t0, t1].

2.2. Local trivialization. We shall now construct a local trivializa-
tion of the path bundle π : PĀP // PM using a local trivialization of
the bundle π : P //M . To this end consider an open set U ⊂M and
a smooth diffeomorphism

φ : U ×G→ π−1(U) (2.2)

that is G-equivariant in the sense that φ(u, gg′) = φ(u, g)g′ for all u ∈ U

and g, g′ ∈ G. Associated to U is the set U0 of all paths that begin in
U :

U0 = ev−1
0 (U)

in the base path space, where ev0 gives the initial point, or source, of
a path:

ev0 : PM //M : γ 7→ γ0
def
= ev0(γ)

def
= γ(t0).

We view U0 as an open subset of PM . We can construct a diffeomor-
phism between π−1

Ā
(U0) and U × G by using the trivialization φ; to

understand this let

γĀp (2.3)

be the Ā-horizontal path on P that starts at p and projects down to
γ; thus

Ā
(
{γĀp }

′(t)
)
= 0 for all t ∈ [t0, t1],

the projection down to the base manifold is

π ◦ γĀp = γ,

and the initial point is p:

γĀp (t0) = p.

Then we define the map:

φ0 : U0 ×G // π−1
Ā
(U0) : (γ, g) 7→ φ0(γ, g)

def
= γĀp , (2.4)

where p = φ(γ0, g).
The mapping φ0 is G-equivariant and is clearly bijective as well.
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2.3. Transition functions. Let us now determine the transition func-
tion between trivializations φ0 and ψ0. For trivializations φ : U ×
G //π−1(U) and ψ : V ×G //π−1(V ) we have the transition function

θφ,ψ : U ∩ V //G

given by

ψ(u, g) = φ(u, g)θφ,ψ(u) for all (u, g) ∈ (U ∩ V )×G.

Then

initial point of ψ0(γ, g) = ψ
(
γ0, g

)

= φ
(
γ0, g

)
θφ,ψ

(
γ0
)

= initial point of φ0(γ, g)θφ,ψ
(
γ0
)
.

(2.5)

Thus the transition function between φ0 and ψ0 is given by

θφ0,ψ0 : U0 ∩ V 0 //G : γ 7→ θφ,ψ
(
ev0(γ)

)
. (2.6)

(Technically, we have not imposed a topology on the path space and so
we do not have to verify continuity or smoothness of these transition
functions.)

2.4. A pullback bundle. We can describe the bundle π : PĀP //PM
as a pullback of the bundle π : P //M under the evaluation map

ev0 : PM //M : γ 7→ γ0 = ev0(γ).

To this end let

ev∗0P := {(γ, p) ∈ PM × P | γ0 = π(p)}. (2.7)

Thus a point of ev∗0P is specified by a point p ∈ P along with a path
γ on M that starts at π(p).
The group G acts on this space by

(γ, p)g := (γ, pg).

The mapping

π0 : ev
∗

0P
// PM : (γ, p) 7→ γ

is a surjective projection for which

π0
(
γg, p

)
= π0(γ, p)

for all p ∈ P , γ ∈ PM and g ∈ G.

Proposition 2.1. The mapping

µ : ev∗0P → PĀP : (γ, p) 7→ γĀp, (2.8)
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where γĀp is the Ā-horizontal lift of γ initiating at p ∈ P , is a G-
equivariant bijection µ : ev∗0P → PĀP . The diagram

ev∗0P

π0

��

µ
// PĀP

π
Ā

��

PM
id

// PM

(2.9)

commutes.

Let us note that πĀ : PĀP // PM is a principal G-bundle (in the
sense that the projection π is a surjection and the group G acts freely
and transitively on each fiber of π); since the base and bundle spaces
are both path spaces it might seem at first that the structure group is
infinite dimensional but in fact it is just G because we are focusing on
the Ā-horizontal paths.

Proof. Consider any (γ, p) ∈ ev∗0P ; then by definition p ∈ π−1(γ0).
Hence we can horizontally lift the path γ on M to P by Ā to obtain
the Ā-horizontal path γĀp starting from p ∈ P and that path is unique.
On the other hand, any element γ ∈ PĀP is the image under µ of(
γ, γ0

)
∈ ev∗0P , where γ = πĀ(γ) ∈ PM . Thus

µ : (γ, p) 7→ γp

is a bijection. Since horizontal lifts behave equivariantly under the
action of G, the mapping µ is G-equivariant. The definition of µ also
implies directly that the diagram (2.9) is commutative. �

2.5. The tangent space TγPĀP . We define a tangent vector ṽ at
γ ∈ PĀP by means of the following description:

(i) ṽ is a C∞ vector field along γ,
(ii) ṽ satisfies the tangency condition

∂Ā(ṽ(t))

∂t
= F Ā(γ′(t), ṽ(t)), (2.10)

for all t ∈ [t0, t1], where [t0, t1] is the domain of γ, and
(iii) ṽ is constant near t0 and near t1.

To be more precise two such vector fields are viewed as the same tangent
vector if they differ by reparametrization by a translation as in the
discussion following (2.1). We denote the set of all such vector fields
by

TγPĀP.
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The linear nature of the differential equation (2.10) implies that this
tangent space is indeed a vector space (closed under addition and scal-
ing).
There is a unique tangent vector ṽ ∈ TγPĀP with a specified projec-

tion vector field v = π∗ṽ and initial value ṽ(t0). We review the proof
from [10, Lemma 2.1]. Let ṽ(t)h be the Ā-horizontal vector in Tγ(t)P
that projects by π∗ to v(t):

Ā
(
ṽ(t)h

)
= 0 and π∗ṽ(t)

h = v(t). (2.11)

Now let

Z(t) = Ā
(
v(t0)

)
+

∫ t

t0

F Ā
(
γ′(u), ṽ(u)h

)
du ∈ L(G),

and consider the vector field ṽ along γ specified by

ṽ(t) = ṽ(t)h + γ(t)Z(t) (2.12)

for all t ∈ [t0, t1]. Then

Ā
(
ṽ(t)

)
= Z(t) = Ā

(
ṽ(t0)

)
+

∫ t

t0

F Ā
(
γ′(u), ṽ(u)

)
du. (2.13)

Thus the differential equation (2.10) holds. Moreover, if ṽ is any vec-
tor field along γ projecting down to v and satisfying the differential
equation (2.10) then the relation (2.13) holds and so ṽ(t) is given by
(2.12). Because γ is constant near t0 and t1 we see that Z is constant
near these endpoints. Similarly v and ṽh are also constants near the
ends, and hence so is ṽ.
Let us see how this is consistent with the pullback point of view in

Proposition 2.1. If ṽ0 ∈ TpP , where p = γ(t0) and if v is a smooth
vector field along γ = πĀ(γ), viewed as a vector in TγPM , with initial
value v(t0) = dπ|pṽ0, then

dµ
∣∣
(γ,p)

(v, ṽ0) = ṽ, (2.14)

where the derivative dµ is taken in a formal but natural sense; more
officially, we can take (2.14) as defining dµ.
Working with the map µ that identifies PĀP with the pullback

bundle ev∗0P it is possible to construct local trivializations of πĀ :
PĀP // PM from those of π : P //M , and these coincide with the
type given in (2.4).

2.6. Changing the base connection PĀP . We have been working
with a fixed connection Ā on the principal G-bundle π : P //M and
using this we have defined the path bundle PĀP //PM . Changing Ā
to another connection Ā′ produces a bundle PĀ′P // PM . We show
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now that this is ‘isomorphic’ to PĀP // PM ; this is, of course, quite
natural from the point of view of Proposition 2.1. For the following
result let us recall that the tangent space TγPĀP consists of all vector
fields ṽ along γ ∈ PĀP , constant near the initial and final points, that
satisfy (2.10).
Let Ā and Ā′ be connections on a principal G-bundle π : P //M .

Let PĀP be the set of all paths on P that are Ā-horizontal and PĀ′P

the set of all Ā′-horizontal paths. For each γ ∈ PĀP let T (γ) be the
path on P that is Ā′-horizontal, has the same initial point as γ, and
projects down to the same path π ◦ γ on M as γ. Thus we have a
mapping

T : PĀP // PĀ′P : γ 7→ T (γ). (2.15)

For any vector field ṽ along γ that belongs to the tangent space TγPĀP
let

T∗ṽ ∈ TT (γ)(PĀ′P ), (2.16)

be the vector field along T (γ) whose initial value is ṽ(t0) and whose
projection by π∗ is the vector field π∗◦ṽ along the path γ = π◦γ ∈ PM .
The mapping T∗ is, in a natural intuitive sense, the derivative of the

mapping T . In more detail, suppose

Γ̃ : [t0, t1]× [s0, s1] // P : (t, s) 7→ Γ̃s(t)

is a C∞ map for which γ = π ◦ Γ̃s0 and

ṽ(t) = ∂sΓ̃s
∣∣
s=s0

(t) for all t ∈ [t0, t1].

This displays the vector field ṽ ∈ TγPĀP as the ‘tangent vector’ to a

path s 7→ Γ̃s on PĀP . Then the image of ṽ under the derivative of T
at γ should be the tangent, at s = s0, of the image path

s 7→ T (Γ̃s).

This tangent is the vector field along T (γ) given by

t 7→ w(t)
def
= ∂sT (Γ̃s)(t)

∣∣∣
s=s0

.

Focusing on the initial ‘time’ t = t0 we have

w(t0) = ∂sΓ̃s(t0)
∣∣∣
s=s0

because T (Γ̃s)(t0) = Γ̃s(t0) by definition of the mapping T . Thus

w(t0) = ṽ(t0).

Thus w ∈ TT (γ)PĀ′P , being uniquely determined by the initial value
w(t0) and the projection π∗ ◦w = π∗ṽ ∈ Tπ◦γM , is exactly T∗(ṽ) as we
have defined it above.
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Proposition 2.2. With A and A′ connections on a principal G-bundle
π : P //M , and T and T as in (2.15) and (2.16), we have:

(i) the mapping T : PĀP // PĀ′P is a bijection;
(ii) for any point in PĀP given by a path γ : [t0, t1] // P and any

ṽ ∈ TγPĀP , the vector

T∗(ṽ)(t)− ṽ(t)gγ(t) (2.17)

is vertical for all t ∈ [t0, t1], where gγ(t) is the element of G for
which T (γ)(t) = γ(t)gγ(t).

Proof. Horizontal lift of a path by a connection is uniquely determined
by the initial point of the lifted path. Using this we see that γ is
determined uniquely when T (γ) is known. Thus T is a bijection.
The right action mapping

Rg : P // P : p 7→ pg,

for any fixed g ∈ G, preserves fibers:

π ◦Rg(p) = π(p) for all p ∈ P .

Taking the derivative at p on any vector v ∈ TpP we then have

π∗|pg

(
(Rg)∗|pv

)
= π∗|pv (2.18)

for all v ∈ TpP and all p ∈ P . Our notation vg means simply (Rg)∗|pv:

vg
def
= (Rg)∗|pv.

Hence
π∗(vg) = π∗(v).

Next from the definition of T∗(ṽ)(t) we know that its projection by π∗ is
the vector π∗(ṽ(t)) ∈ Tπ◦γ(t)M . Thus the vectors T∗(ṽ)(t) and ṽ(t)gγ(t)
in TT (γ)(t)P both project down by π∗ to the vector π∗(ṽ(t)) ∈ Tπ◦γ(t)M .
Hence the difference T∗(ṽ)(t)− ṽ(t)gγ(t) is a vertical vector. �

2.7. Pullback of forms. We continue with the comparison of the hor-
izontal path spaces PĀP and PĀ′P using the mapping T . We define
pullbacks in the natural way: if D̃ is a k-form on PĀ′P , with values in
some vector space, then T ∗D̃ is the k-form on PĀP given by

(T ∗D̃)(ṽ1, . . . , ṽk) = D̃(T∗ṽ1, . . . , T∗ṽk). (2.19)

For example, suppose B is 2-form on P with values in some vector
space. Consider then the 2-form B̃ on PĀ′P given by

B̃γ̃(ṽ, w̃) =

∫ t1

t0

Bγ̃(t)

(
ṽ(t), w̃(t)

)
dt (2.20)
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for all γ̃ ∈ PĀ′P and ṽ, w̃ ∈ Tγ̃PĀ′P . Then

(
T ∗B̃

)
|γ(v, w) =

∫ t1

t0

BT (γ)

(
(T∗v)(t), (T∗w)(t)

)
dt. (2.21)

We can also pullback the 1-form on PĀ′P given by the Chen integral

Bch
γ̃ (ṽ)

def
=

∫ t1

t0

B
(
γ̃′(t), ṽ(t)

)
dt (2.22)

to obtain the 1-form T ∗Bch given by

(T ∗Bch)γ(v)
def
=

∫ t1

t0

B
(
γ′(t), v(t)

)
dt. (2.23)

(Chen integrals were introduced and developed in [12, 13].) As another
example, for a 1-form C on P , with values in some vector space, we
have a 1-form C̃0 on PĀ′P given by

C̃0|γ̃(ṽ) = C0|γ̃(t0)
(
ṽ(t0)

)

and then the pullback T ∗C̃0 is given by

(
T ∗C̃0

)
|γ(v) = C̃0|T (γ̃)(t0)

(
(T∗v)(t0)

)
, (2.24)

for all γ ∈ PĀP and v ∈ TγPĀP .

3. A connection form on the space of horizontal paths

We continue working with a principal G-bundle

π : P //M

equipped with a connection form Ā, and the corresponding projection
map

πĀ : PĀP // PM : γ 7→ π ◦ γ,

where PM is the space of smooth paths on M and PĀP the space
of smooth horizontal paths in P . In the preceding section we have
seen how πĀ : PĀP // PM can be viewed, in a reasonable sense, as a
principal G-bundle. Now we turn to a description of a 1-form ω on PĀP
(the sense in which this is a 1-form will become clear) that essentially
provides a connection form on this path space bundle.
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3.1. The 2-form B0 and a connection form A. Henceforth we will
work with an L(G)-valued 2-form B0 on P that has the following two
special properties:

(i) B0 is Ad-equivariant in the sense that

B0|pg(vg, wg) = Ad(g−1)B0(v, w),

for all p ∈ P and all v, w ∈ TpP ;
(ii) B0 is horizontal in the sense that

B0(v, w) = 0

whenever v or w is a vertical vector, i.e. in ker π∗.

Thus B0 satisfies

B0|pg(vg, wg) = Ad(g−1)B0(v, w), ∀v, w ∈ TpP, g ∈ G,

B0(v, w) = 0, if v or w is vertical
(3.1)

at all points p ∈ P .
As our final ingredient, let A be a connection form on the G-bundle

π : P //M .

3.2. The form ω(A,B0) on PĀP . We define an L(G)-valued 1-form
ω(A,B0) on PĀP by

ω
(A,B0)
γ (ṽ) := A

(
ṽ(t0)) +

∫ t1

t0

B0(ṽ(t), γ
′(t)

)
dt, (3.2)

where ṽ ∈ TγPĀP .

3.3. The connection form ω on PĀP . In ω(A,B0) we have given a
special role to the left endpoint γ(t0); this could, however, be replaced
by the right endpoint γ(t1). In fact a slightly more general construction
leads to a 1-form with dependence on both endpoints. To this end, let
CL

0 and CR
0 be 1-forms on P , with values in L(G), that vanish on

vertical vectors and are equivariant:

C
L,R
0 |pg(vg) = Ad(g−1)CL,R

0 |p(v) (3.3)

Consider then the L(G)-valued 1-form

ω = ω(A,B0,C
L
0
,CR

0
)

on PĀP given by

ωγ(ṽ)
def
= A|γ(t0)

(
ṽ(t0)

)
+ CR

0 |γ(t1)
(
ṽ(t1)

)
− CL

0 |γ(t0)
(
ṽ(t0)

)

+

∫ t1

t0

B0|γ(t)
(
ṽ(t), γ′(t)

)
dt.

(3.4)
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Thus

ω = ω(A,B0) + ev∗1C
R
0 − ev∗0C

L
0 , (3.5)

where ev0 and ev1 are the evaluations at the left and the right endpoints
respectively.
The additional terms in (3.5) allow us to include counterparts of

ω(A,B0) that have a right endpoint term in place of the left endpoint
term A

(
v(t0)

)
by taking

CL
0 = CR

0 = A− Ā (3.6)

and replacing B0 by F
Ā+B0 leads to the counterpart of ω(A,B0) involv-

ing the right endpoint in place of the left endpoint.

Proposition 3.1. The 1-form ω on the principal G-bundle πĀ : PĀP //PM
has the following properties:

(i)

ω(ṽg) = Ad(g−1)ω(ṽ) (3.7)

for all g ∈ G and all vector fields ṽ ∈ TγPĀP and all γ ∈ PĀP ;

(ii) If Y is any element of the Lie algebra L(G) and Ỹ is the vector

field along γ given by Ỹ (t) = d
du

∣∣
u=0

γ(t) exp(uY ), then

ω(Ỹ ) = Y. (3.8)

The property (3.8) can also be written as:

ωγ(γY ) = Y for all Y ∈ L(G) and γ ∈ PĀP . (3.9)

In [10, Proposition 2.2] we have established the preceding result with
CR

0 = 0. The proof is simple, so we present a quick sketch here. The
equivariance property (i) holds for each of the terms on the right in
the definition of ω in (3.4) and so it holds for ω. Next, applying ω to

the vector Ỹ ∈ TγPĀP all terms on the right in (3.4) are 0 except for

the very first one which equals A
(
γ(t0)Ỹ

)
= Y since A is a connection

form on P ; this establishes property (ii).
Properties (i) and (ii) are the essential properties of a connection

form on a traditional principal bundle and so we will say that ω is a
connection on π : PĀP //PM even though we have not equipped the
latter with a smooth structure. We will use this terminology henceforth
for other forms that enjoy the properties (i) and (ii) in the relevant
bundles.
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3.4. Horizontal lifts of vectors using ω. Having constructed the
connection form ω on the pathspace bundle, we now turn to a descrip-
tion of horizontal lifts with respect to ω. Consider a path γ ∈ PM and
a tangent v ∈ TγPM ; this is just a smooth vector field along γ constant
near the initial and terminal points. Our objective now is to show that
for any γ ∈ π−1

Ā
(γ), the connection ω provides a unique horizontal lift

v ∈ TγPĀP ; that is, v satisfies

ωγ
(
v
)
= 0 and πĀ(v) = v. (3.10)

We can choose a C∞ vector field v along the path γ for which

dπγ(t)
(
vγ(t)

)
= vγ(t) for all t ∈ [t0, t1].

Now let Z0 be the element of L(G) given by

Z0 = −
[
CR

0 |γ(t1)
(
v(t1)

)
− CL

0 |γ(t0)
(
v(t0)

)
+

∫ t1

t0

B0|γ(t)
(
v(t), γ′(t)

)
dt
]
.

(3.11)
Let v0 ∈ Tγ(t0)P for which

v0 = vh0 + γ(t0)Z0, (3.12)

where

vh0 ∈ Tγ(t0)P

is the unique A-horizontal vector that projects by π∗ down to v(t0).
Now let v be the vector field along γ that is in the tangent space
TγPĀP and has initial value v0; this vector field is specified in (2.12)
discussed earlier. Thus

Aγ(t0)
(
v(t0)

)
= Aγ(t0)(Z0) (3.13)

and so

Aγ(t0)
(
v(t0)

)
+ CR

0 |γ(t1)
(
v(t1)

)
− CL

0 |γ(t0)
(
v(t0)

)
+

∫ t1

t0

B0|γ(t)
(
v(t), γ′(t)

)
dt

= 0.
(3.14)

This says precisely that

ωγ(v) = 0.

Thus we have shown existence of the ω-horizontal lift v ∈ TγPĀP of
the vector field v ∈ TγPM . Uniqueness follows from the fact that the
condition (3.14) implies that the initial value v(t0) is given by v0 as
in (3.12 ), and this uniquely specifies v as discussed in the context of
(2.12).
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3.5. Parallel transport of horizontal paths by ω. Let us now un-
derstand the process of parallel transport in the bundle PĀP using the
connection form ω; we recall that

ωγ(v) = A
(
v(t0)

)
+ CR

0

(
v(t1)

)
− CL

0

(
v(t0)

)
+

∫ t1

t0

B0

(
v(t), γ′(t)

)
dt,

(3.15)
for any γ ∈ PĀP and v ∈ TγPĀP . Consider a C

∞ map

[t0, t1]× [s0, s1] //M : (t, s) 7→ Γ(t, s) = Γs(t),

forming a path s 7→ Γs on PM , and consider an initial ‘point’ Γ̃s0 ∈
PĀP with

π ◦ Γ̃s0 = Γs0.

Now let
Γ : [t0, t1]× [s0, s1] // P : (t, s) 7→ Γs(t)

be the mapping specified by the requirements that each path

t 7→ Γs(t)

be Ā-horizontal (hence Γs ∈ PĀP ), with π ◦ Γs = Γs, and the initial
points Γs(t0) trace out an A-horizontal path on P with initial point
Γ̃s0(t0):

s 7→ Γs(t0) ∈ P is an A-horizontal path,

Γs0 = Γ̃s0 .
(3.16)

By the nature of the differential equation for parallel transport the
path s 7→ Γs(t0) is C

∞ and then so is the mapping Γ. Moreover, if Γ is
constant in a ‘rectangular’ band of thickness ǫ > 0 near the boundary
of [s0, s1]× [t0, t1], then so is Γ.
Now we would like to understand the nature of the path

s 7→ Γ̃s ∈ PĀP

that is the ω-horizontal lift of s 7→ Γs. Since both Γ̃s and Γs are Ā-
horizontal and both project down to the same path Γs ∈ PM we can
express Γ̃s as a rigid shift of Γs:

Γ̃s = Γsas (3.17)

for a unique as ∈ G, for each s ∈ [s0, s1]. The tangent vector to PĀP

for the derivative of s 7→ Γ̃s is the vector field along Γ̃s given by

t 7→ ∂sΓ̃s(t) = ∂tΓs(t)as + Γs(t)as a
−1
s ȧs, (3.18)

with the natural meaning for the notation used; for example, the second
term on the right is the vector at the point Γs(t)as ∈ P arising from
the vector a−1

s ȧs ∈ L(G). We note that the second term on the right is
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a vertical vector. We recall that B0 vanishes on vertical vectors and A,
being a connection form, maps a vertical vector of the form pZ ∈ TpP

to Z ∈ L(G). Applying ω to ∂tΓ̃s(t) we then obtain

A
(
∂tΓs(t0)as

)
+ a−1

s ȧs + CR
0

(
∂tΓs(t1)as

)
− CL

0

(
∂tΓs(t0)as

)

+

∫ t1

t0

B0

(
∂sΓs(t)as, ∂tΓs(t)as

)
dt.

(3.19)

The condition that s 7→ Γ̃s is ω-horizontal is that the above expression
is 0 for s ∈ [s0, s1]. Using the equivariance properties of A, B0, C

L
0 and

CR
0 , this condition is then equivalent to

ȧsa
−1
s = −A

(
∂tΓs(t0)

)
− CR

0

(
∂tΓs(t1)

)
+ CL

0

(
∂tΓs(t0)

)

−

∫ t1

t0

B0

(
∂sΓs(t), ∂tΓs(t)

)
dt.

(3.20)

Now the definition of as given in (3.17), as the ‘shift’ that should be
applied to Γs to yield Γ̃s, shows that at s = s0 the value is e because,
by our definition of s 7→ Γs the initial path Γs0 is the same as the given
initial path Γ̃s0. Since the right hand side of (3.20) involves only C∞

functions, there is a unique C∞ solution path

[s0, s1] //G : s 7→ as.

Thus we have constructed the ω-horizontal lift

[s0, s1] // PĀP : s 7→ Γ̃s = Γsas (3.21)

of the given path s 7→ Γs on PM .
Since the ordinary differential equation (3.20) has a unique solution

with given initial value as0 = e it follows that any C∞ path s 7→ Γs
on PM has a unique ω-horizontal lift to a path s 7→ Γ̃s on PĀP with
given initial path Γ̃0.
Let us note that if A = Ā then the first term on the right in (3.20)

is 0. No essential generality is achieved by working with an A different
from Ā because their difference could be absorbed into CL

0 .

4. The decorated bundle

In this section we shall construct a ‘decorated’ principal bundle over a
path space starting with a traditional principal bundle along with some
additional data. This notion was introduced in our earlier work [11]
where we developed it from a mainly category-theoretic point of view.
In this section we shall explore this notion from a more differential
geometric standpoint. Furthermore, we shall work out several formulas,
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such as for the derivatives of right actions on the relevant bundles, that
will be of use later when we work with connection forms.
As we have remarked before, the motivation for constructing the

decorated bundle comes from a physics context, where the decoration
arises from a second structure group that describes a gauge theory
where point particles are replaced by paths.

4.1. Lie crossed modules. A Lie crossed module (G,H, α, τ) is com-
prised of Lie groups G and H , and homomorphisms

τ : H → G and α : G→ Aut(H), (4.1)

with τ being smooth and the map G×H //H : (g, h) 7→ α(g)(h) also
smooth, satisfying

τ(α(g)(h)) = gτ(h)g−1, ∀g ∈ G, h ∈ H,

α(τ(h))(h′) = hh′h−1, ∀h, h′ ∈ H.
(4.2)

For later use we note that the derivative of the first relation in (4.2)
leads to

τ
[
α(g)X

]
= Ad(g)τ(X) (4.3)

for all g ∈ G and X ∈ L(H), and we have used the following natural
notation: in (4.3) τ means τ(X) = dτ |eX , and α(g)X = dα(g)|eX .
We need only the semidirect product group H ⋊α G. The map τ

becomes significant in the category theoretic framework, where the Lie
crosses module corresponds to a categorical Lie group G, whose object
set is G and whose morphisms are of the form (h, g), with source g and
target τ(h)g.

4.2. The semidirect product H ⋊α G and conjugation. Below in
subsection 4.3 we will construct a principal bundle whose structure
group is the semidirect product H ⋊αG; the product law in this group
is given by

(h1, g1)(h2, g2) =
(
h1α(g1)(h2), g1g2

)
. (4.4)

Identifying H and G in the natural way as subgroups in H ⋊α G we
have the commutation relation

hg = gα(g−1)(h) (4.5)

for all h ∈ H and g ∈ G; to verify this note that the left side is, by
definition, (h, e)(e, g) = (h, g) and the right side is (e, g)

(
α(g−1)(h), e

)
.

The commutation relations can be used to reformulate some of our
constructions below in a manner where the elements of G appear be-
fore the elements of H and for some relations this results in clearer
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expressions. For example, the commutation relation is also equivalent
to

gh = α(g)(h)g. (4.6)

It is also very useful to note that after identifying G and H with
subgroups of H ⋊αG (specifically, writing g for (e, g) and h for (h, e)),
the commutation relation gives the following friendly form for the au-
tomorphism α:

α(g)(h) = ghg−1; (4.7)

thus the automorphism α(g) is simply conjugation by g in H ⋊α G

restricted to the subgroup H ≃ H × {e}.
The identification of H and G with the corresponding subgroups of

H ⋊α G often provides a great simplification of notation. An example
of this simplification is seen in the derivative of the mapping α(g) :
H //H at e ∈ H , which can be obtained by restricting the operator

Ad(g) : L(H ⋊α G) // L(H ⋊α G) (4.8)

to the subspace L(H).

4.3. The decorated bundle. The total space of the bundle we will
study is obtained by decorating P with elements of H :

Pdec
Ā P := PĀP ×H. (4.9)

The bundle projection is given by (γ, h) 7→ πĀ(γ) = π ◦ γ. The group
H ⋊α G acts on the right on the space Pdec

Ā
P by

(γ, h)(h1, g1) :=
(
γg1, α(g

−1
1 )(hh1)

)
. (4.10)

(This action has an important property that becomes clearer in the cat-
egory theoretic framework: the categorical group arising from (G,H, α, τ)
has a functorial right action on the category whose object set is P and
whose morphisms are of the form (γ, h).) It will be notationally conve-
nient to write (γ, h) as γh; then the action (with a dot, which we shall
later omit, for visual clarity) reads

γh · h1g1 = γg1 · α(g
−1
1 )(hh1), (4.11)

an expression which has a formal consistency with the commutation
relation (4.5). What we are denoting γh here is what is denoted (γ, h−1)
in [11]. We note that for any γ ∈ PĀP , g ∈ G and h ∈ H ,

γg is an element of PĀP ;

γh is an element of PĀP ×H .

The notation
γhg
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might have two potentially different meanings:

(γeH) · (hg) = (γ, eH)(h, g) or (γh) · g = (γ, h)(eH , g),

where we have written eH to stress that it is the identity inH . However,
we can readily verify the following notational consistencies:

γeH · h = γh

γeH · hg = γg · α(g−1)(h) = γh · g,
(4.12)

where on the right sides h is, technically, (h, e) and g is (e, g) in H⋊αG.
Because of the relations (4.12 ), we can write γeH simply as γ if

needed.

Proposition 4.1. The mapping

Pdec
Ā P × (H ⋊α G) // Pdec

Ā P : (γh, h1g1) 7→ γh · h1g1 (4.13)

is a right action. This action is free and is transitive on the fibers of
πdec
Ā

: Pdec
Ā
P // PM .

Proof. We verify that (4.13) specifies a right action:

γh · (h1g1h2g2) = γh ·
(
h1α(g1)(h2)g1g2

)

= γg1g2 · α(g
−1
2 g−1

1 )
(
hh1α(g1)(h2)

)

= γg1g2 · α(g
−1
2 )

(
α(g−1

1 )
(
hh1

)
h2

)

=
(
γg1 · α(g

−1
1 )(hh1)

)
· h2g2

=
(
γh · h1g1

)
h2g2.

(4.14)

Let us now verify that the action is free. Suppose

a relation γh · h1g1 = γh. (4.15)

By (4.11), this means

γg1 · α(g
−1
1 )(hh1) = γh,

which in turn is equivalent to

g1 = e and hh1 = h

with the latter relation being equivalent to h1 = e. Thus the fixed
point relation (4.15) implies that h1g1 = e.
Next suppose πdec

Ā
(γ1, h1) = πdec

Ā
(γ2, h2). Then γ1 and γ2, both Ā-

horizontal paths in P , project down to the same path γ ∈ PM , and so
there is a g ∈ G such that

γ2 = γ1g.
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Next we observe that

γ2h2 = γ1gh2

= γ1α(g)(h2)g (by the commutation relation (4.6))

= γ1h1 · h
−1
1 α(g)(h2)g.

(4.16)

Thus (γ2, h2) is obtained by acting on (γ1, h1) with the element h−1
1 α(g)(h2)g ∈

H ⋊α G. �

As an illustration of the power of working within the semidirect
product and using the notation hg = (h, g) and γhg = (γ, h)(eH , g),
we realize that the computation (4.14) becomes completely natural
using this notation:

γh · (h1g1h2g2) = γh ·
(
h1α(g1)(h2)g1g2

)

= γg1g2 · α(g
−1
2 g−1

1 )
(
hh1α(g1)(h2)

)

= γg1g2 · α(g
−1
2 )

(
α(g−1

1 )
(
hh1

)
h2

)

=
(
γg1 · α(g

−1
1 )(hh1)

)
· h2g2

=
(
γh · h1g1

)
h2g2.

(4.17)

4.4. Local trivialization of the decorated bundle. We have seen
that a local trivialization

φ : U ×G // π−1(U)

of the original bundle π : P // M leads to a local trivialization of
(πĀ,PĀP,PM) given in (2.4) by

φ0 : U0 ×G // π−1
Ā
(U0).

Let φ0 be the inverse of φ0; thus,

φ0 : π
−1
Ā
(U0) // U0 ×G

is a G-equivariant bijection. Now we can construct a local trivialization
for the (H ⋊α G)-bundle (πdec,P

dec
Ā
P,PM) by means of the mapping:

φdec : U0 × (H ⋊α G) // π−1
dec(U

0)
(
γ, (h, g)

)
7→

(
γ, α(g−1)(h)

) (4.18)

where γ = φ0(γ, g) is the Ā-horizontal lift of γ starting at the the point
φ(γ0, g), with γ0 being the source (initial point) of γ. The inverse of
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this is:

φdec : π
−1
dec(U

0) // U0 × (H ⋊α G)

(γ, h) 7→
(
γ,

(
α(g)(h), g

))

where g is specified by (γ, g) = φ0(γ).

(4.19)

We can check that this is equivariant under the action of H ⋊α G:

φdec
(
γ, hg) · h1g1 =

(
φ0(γ, g), α(g−1)(h)

)
h1g1

=
(
φ0(γ, g)g1, α

(
g−1
1 )(α(g−1)(h)h1

))

=
(
φ0(γ, gg1), α(g

−1
1 g−1)

(
hα(g)(h1)

))
(4.20)

which agrees with

φdec
(
γ, hgh1g1

)
=

(
φ0
(
γ, gg1

)
, α

(
(gg1)

−1
)
(hα(g)(h1)

)
(4.21)

Thus we have proved:

Proposition 4.2. (πdec,P
dec
Ā
P,PM) is a principal H⋊αG-bundle with

right-action given by (4.10) and local trivialization given by (4.18).

Let us note that when working with bundles over spaces of paths we
do not use a topology or an explicitly stated smooth structure. This is
discussed further in section 8.

4.5. The derivative of the right action. We turn now to some de-
rivative computations that will be useful later, for example in Proposi-
tion 5.1, when we study a connection form Ω on the bundle of decorated
paths. We view Pdec

Ā
P = PĀP × H as we would a product manifold.

Thus we specify a tangent vector v̂ at (γ, h) ∈ Pdec
Ā
P by

v̂ = v +X,

where v ∈ TγPĀP and X ∈ ThH . (The tangent space TγPĀP is itself
identifiable with TγPM ⊕ L(G), where γ = π ◦ γ, by means of a local
trivialization.) Thus we will take the tangent space T(γ,h)P

dec
Ā
P to be

T(γ,h)P
dec
Ā P = TγPĀP ⊕ ThH. (4.22)

Recalling from (4.10) the right action of H ⋊α G on Pdec
Ā
P given by

(γ, h)h1g1 =
(
γg1, α(g

−1
1 )(hh1)

)
, (4.23)

we take, for fixed (h1, g1) ∈ H ⋊α G, the ‘differential’ of the map

Pdec
Ā P // Pdec

Ā P : (γ, h) 7→ (γ, h)h1g1



CONNECTIONS ON DECORATED PATH SPACE BUNDLES 23

to be given by

R(h1,g1)∗ : T(γ,h)P
dec
Ā P → T(γ,h)h1g1P

dec
Ā P

R(h1,g1)∗(v +X) : = (v +X)(h1, g1) = vg1 + g−1
1 (Xh1)g1,

(4.24)

where Xh1 ∈ Thh1H is the image of X ∈ ThH under the derivative of
the right-translation map H //H : x 7→ xh1, and the last term on the
right hand side is, more precisely, the derivative dα(g)|hh1 applied to
Xh1.

4.6. Derivative of the orbit map. Next let us look at what should
be taken to be the differential of the map

H ⋊α G // Pdec
Ā P : (h1, g1) 7→ (γ, h)h1g1,

where (γ, h) is any fixed point in Pdec
Ā
P . (This will be useful when we

study the connection form Ω in Proposition 5.1.) We use the realization
of the tangent space to H ⋊α G as

T(h1,g1)(H ⋊α G) = Th1H ⊕ Tg1G,

and write a vector in this space in the form

h1Y1 + g1Z1
def
= (h1Y1, g1Z1) ∈ Th1H ⊕ Tg1G,

where Y1 ∈ L(H) and Z1 ∈ L(G). Here, as always, xV means the
derivative of the left-translation mapG //G : y 7→ xy by x on V ∈ TxG

and V x has an analogous meaning with respect to right translations.
We will often use notation such as xV that makes it possible to see at
a glance that we are speaking of a vector located at the point x.
We also realize the tangent space T(γ,h)(P

dec
Ā
P ) as

T(γ,h)(P
dec
Ā P ) = Tγ(PĀP )⊕ ThH.

We will frequently need to use the derivative of the inversion map

j : G //G : g 7→ g−1,

and this is given by

dj|g(W ) = −g−1Wg−1, (4.25)

for all tangent vectors W ∈ TgG. In particular if W = gZ, where
Z ∈ L(G), then

dj|g(gZ) = −Zg−1. (4.26)

As always we denote by

γg1Z
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the vertical vector field along γg1 whose value at any parameter value
t is

γ(t)g1Z =
d

ds

∣∣∣
s=0

γ(t)g1 exp(sZ). (4.27)

Let us write the right action of H ⋊α G on PĀP × H , as we have
done in (4.10), in the form

(γ, h)h1g1 = (γg1, g
−1
1 hh1g1). (4.28)

Holding (γ, h) fixed, the derivative of the orbit map

h1g1 7→ (γ, h)h1g1

is given by

r(γ,h),(h1,g1) : T(h1,g1)(H ⋊α G) // T(γ,h)h1g1P
dec
Ā P

h1Y1 + g1Z1 7→ γg1Z1 + g−1
1 hh1Y1g1

+
(
g−1
1 hh1g1Z1 − Z1g

−1
1 hh1g1

)
,

(4.29)

where the last expression, comprised of two terms within (· · · ), lies
in Thh1H , by the reasoning used below in (4.31). Let us note here
the distinction between the derivative r(γ,h),(h1,g1) and the derivative
{R(h,g)∗.
Here and in most of our computations we identify the Lie algebras of

H and G with the corresponding subalgebras inside L(H ⋊α G). Thus

L(H ⋊α G) = L(H)⊕ L(G) as a direct sum of vector spaces. (4.30)

Evaluating the derivative in (4.29) at the identity (e, e) ∈ H ⋊α G we
obtain the linear map

r(γ,h) : L(H ⋊α G) // T(γ,h)P
dec
Ā P

Y1 + Z1 7→ γZ1 + hY1 + hZ1 − Z1h

= γZ1 + h
(
Y1 +

(
1− Ad(h−1)

)
Z1

)
,

(4.31)

where Y1 ∈ L(H) and Z1 ∈ L(G). Note that Ad(h−1)Z1 is obtained
by applying Ad(h−1) to Z1, with everything taking place inside the Lie

algebra L(H ⋊α G). The term
(
1 − Ad(h−1)

)
Z1

)
lies in L(H), which

can be seen by examining the derivative, at the identity in G, of the
mapping

G //H : g1 7→ g1hg
−1
1 = α(g1)(h).
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5. Connections on the decorated bundle

We continue with the framework established in the preceding sec-
tions. Thus Ā is a connection on a principal G-bundle

π : P //M,

and (G,H, α, τ) is a Lie crossed module. We have then a connection
ω(A,B0), constructed from a connection A on P and an L(G)-valued
2-form B0 on P , on the horizontal path bundle

PĀP // PM,

which is also a principal G-bundle in the sense discussed before. We
have constructed the decorated principal H ⋊α G-bundle

Pdec
Ā P = PĀP ×H // PM.

In this section we shall construct a connection on this decorated bundle
by using the connection ω and two additional forms on P as ingredients.

5.1. The endpoint forms CL,R and a 2-form B. As noted before,
the Lie algebra L(H⋊αG) is the vector space direct sum L(H)⊕L(G)
(the Lie algebra structure on L(H ⋊α G) is not, however, obtained as
a direct sum of Lie algebras). Viewing G as a subgroup of H ⋊α G

we have, for each g ∈ G, the operator Ad(g−1) on L(H ⋊α G). We
shall work with an L(H ⋊α G)-valued 2-form B on P with following
properties:

B(ug, vg) = Ad(g−1)(B(u, v)) ∀u, v ∈ TpP, g ∈ G,

B(u, v) = 0, if u or v is vertical.
(5.1)

Let us note here that in the first equation above, Ad(g) is acting on
L(H⋊αG) as in (4.8). Since this action maps L(G) into itself and L(H)
also into itself, the equations in (5.1) mean that they hold separately
for the components B0 and B1. We shall also use L(H ⋊α G)-valued
1-forms CL and CR on P that have the following properties:

CL|pg(vg) = Ad(g−1)CL|p(v) ∀v ∈ TpP, g ∈ G,

CL|p(v) = 0, if v ∈ TpP is any vertical vector,
(5.2)

for all p ∈ P and the corresponding properties for CR.
Let Σ be the Maurer-Cartan form on H :

Σh(X) = h−1X, ∀h ∈ H, X ∈ ThH,

where on the right the notation signifies the action of the derivative of
the left-translation map h1 7→ h−1h1.
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5.2. The connection form Ω. As before we denote the evaluation
map at the initial point by:

ev0 : P
dec
Ā P // P : (γ, h) 7→ γ(t0),

where the domain of γ is an interval [t0, t1]. Using a connection form
A on P , along with the L(H ⋊α G)-valued 2- and 1-forms

B = B0 +B1

CL,R = C
L,R
0 + C

L,R
1 ,

(5.3)

we define a 1-form Ω on Pdec
Ā
P , with values in L(H ⋊α G), as follows:

Ωγ,h
def
= Ad(h−1)

[
ev∗0

(
A− CL

)
|γ(t0) + ev∗

1(C
R)|γ(t1) +

∫

γ

B

]
+ Σh,

(5.4)

where on the right we view Σ as a form on PĀP ×H with the obvious
pullback from the projection map onto H . Thus

Ωγ,h(v +X)

= Ad(h−1)
[
ωγ(v) + CR

1 |γ(t1)(v(t1))− CL
1 |γ(t0)(v(t0))

+

∫ t1

t0

B1|γ(t)(v(t), γ
′(t))dt+Xh−1

]
,

(5.5)

where v +X ∈ T(γ,h)P
dec
Ā
P , with v a vector field along the path γ and

X ∈ ThH , and the 1-form ω is as defined in (3.4):

ωγ(v) : = Aγ(t0)(v(t0)) + CR
0 |γ(t1)

(
vγ(t1)

)
− CL

0 |γ(t0)
(
vγ(t0)

)

+

∫ t1

t0

B0|γ(t)
(
v(t), γ′(t)

)
dt,

(5.6)

for every path γ : [t0, t1] // P in PĀP .
Let us recall the right action

Pdec
Ā P × (H ⋊α G) // Pdec

Ā P :
(
(γ, h), (h1, g1)

)
7→ (γg1, g

−1
1 hh1g1).

(5.7)
From this map we have the two ‘directional derivatives’:

R(h1,g1)∗ : Tγ,h(P
dec
Ā P ) // T(γ,h)h1g1(P

dec
Ā P )

and

r(γ,h) : T(h1,g1)(H ⋊α G) // T(γ,h)h1g1(P
dec
Ā P ).

(5.8)

Proposition 5.1. The 1-form Ω is a connection on (πdec,P
dec
Ā
P,PM)

in the sense that the following conditions hold.
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(i) It is equivariant under the right-action of H ⋊α G:

Ω(γ,h)h1g1R(h1,g1)∗(v,X) = Ad(h1g1)
−1Ω(γ,h)(v,X) (5.9)

for all h, h1 ∈ H, g1 ∈ G, γ ∈ PĀP , v ∈ TγPĀP and X ∈ ThH;
(ii) It returns the appropriate elements of L(H ⋊α G) when applied

to vertical vectors:

Ω(γ,h)r(γ,h)(Y1 + Z1) = Y1 + Z1, (5.10)

where r(γ,h) is the derivative of the right-action of H ⋊α G on
PĀP as in (4.29) and (Y1, Z1) ∈ L(H)⊕ L(G).

Proof. For notational convenience we shall write v0 for v(t0), γ0 for
γ(t0), and analogously for other paths and vector fields.
Working through the right-action we have

Ω(γ,h)h1g1R(h1,g1)∗(v,X)

= Ω(γg1,g
−1

1
hh1g1)

(vg1 + g−1
1 Xh1g1)

using (4.24)

= Ad(g−1
1 h−1

1 h−1g1)
(
ωγ(vg1) + CR

1 |γ1g1(v0g1)− CL
1 |γ0g1(γ0g1)

)

+ (g−1
1 hh1g1)

−1g−1
1 Xh1g1 +Ad(g−1

1 h−1
1 h−1g1)

∫ t1

t0

B1

(
v(t)g1, γ

′(t)g1
)
dt.

(5.11)

We work out the last term on the right separately:

Ad(g−1
1 h−1

1 h−1g1)

∫ t1

t0

B1

(
v(t)g1, γ

′(t)g1
)
dt

= Ad(g−1
1 h−1

1 h−1g1)Ad(g
−1
1 )

∫ t1

t0

B1

(
v(t), γ′(t)

)
dt

(using the equivariance property of B1 from (5.1))

= Ad(g−1
1 h−1

1 h−1)

∫ t1

t0

D
(
v(t), γ′(t)

)
dt.

(5.12)

Returning to our computation (5.11), we have:

Ω(γ,h)h1g1R(h1,g1)∗(v,X)

= Ad(g−1
1 h−1

1 h−1g1)Ad(g
−1
1 )

(
ωγ(v) + CR

1 |γ1(v0)− CL
1 |γ0(v0)

)

+ g−1
1 h−1

1 h−1g1 g
−1
1 Xh1g1 +Ad(g−1

1 h−1
1 h−1)

∫ t1

t0

B1

(
v(t), γ′(t)

)
dt.

(5.13)
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On the other hand

Ad(h1g1)
−1Ω(γ,h)(v,X)

= Ad(h1g1)
−1Ad(h−1)

(
ωγ(v) + CR

1 |γ1(v0)− CL
1 |γ0(v0)

)

+Ad(h1g1)
−1(h−1X) + Ad(h1g1)

−1Ad(h−1)

∫ t1

t0

B1

(
v(t), γ′(t)

)
dt.

(5.14)

We see that this is equal to the expression on the right in (5.13). This
proves property (i) for Ω.
Next we consider how the connection form acts on a ‘vertical vector’

in the bundle Pdec
Ā
P ; such a vector is of the form

r(γ,h)(Y1 + Z1) ∈ T(γ,h)(P
dec
Ā P ),

where

Y1 + Z1 = (Y1, Z1) ∈ L(H)⊕ L(G)),

is an arbitrary vector in L(H ⋊α G). Thus

Ω(γ,h)r(γ,h)(Y1 + Z1)

= Ω(γ,h)

(
γZ1 + h(Y1 +

(
1−Ad(h−1)

)
Z1

)

(using the expression for r(γ,h) obtained in (4.31))

= Ad(h−1)
(
ωγ(γZ1) + CR

1 |γ1(γ1Z1)− CL
1 |γ0(γ0Z1)

)

+
[
Y1 +

(
1−Ad(h−1)

)
Z1

]
+Ad(h−1)

∫ t1

t0

B1

(
γ(t)Z1, γ

′(t)
)
dt.

(5.15)

In the expression on the right, the terms with C and the last term,
with B1, are 0 because B1, C

L
1 and CR

1 vanish on vertical vectors (see
(5.1) and (5.2)). The first term equals Z1:

ωγ(γZ1) = Z1, (5.16)

as seen in (3.9).
Putting all this together we have

Ω(γ,h)r(γ,h)(Y1 + Z1)

= Ad(h−1)Z1 +
[
Y1 +

(
1− Ad(h−1)

)
Z1

]
+ 0

= Y1 + Z1.

(5.17)

This proves property (ii). �
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The conditions (i) and (ii) above imply that the form Ω splits each
tangent space T(γ,h)P

dec
Ā
P into horizontal and vertical subspaces as ex-

plained in the following result.

5.3. Horizontal and vertical parts. We turn now to understanding
how the connection form Ω splits a vector v ∈ T(γ,h)P

dec
Ā
P splits into a

horizontal and a vertical component.

Proposition 5.2. At any (γ, h) ∈ Pdec
Ā
P , Ω splits T(γ,h)P

dec
Ā
P into a

direct sum:

T(γ,h)P
dec
Ā P = H(γ,h)P

dec
Ā P ⊕ V(γ,h)P

dec
Ā P, (5.18)

where the ‘horizontal subspace’ H(γ,h)P
dec
Ā
P is

H(γ,h)P
dec
Ā P = ker Ω(γ,h), (5.19)

and the ‘vertical subspace’ V(γ,h)P
dec
Ā
P is the image of r(γ,h):

V(γ,h)P
dec
Ā P = {r(γ,h)(Y1 + Z1) : Y1 ∈ L(H), Z1 ∈ L(G)}, (5.20)

as noted in (4.31), with r(γ,h) being the right action of H⋊αG on Pdec
Ā
P .

Proof. Let
v̂ = v +X ∈ T(γ,h)P

dec
Ā P,

where v ∈ TγPĀP,X ∈ ThH . Let vH and vV be, respectively, the
horizontal and vertical components of v with respect to the connection
ω = ω(A,B0). Thus, in particular, ωγ(v

H) = 0.
Let γ1 denote the right endpoint γ(t1), and γ0 denote the left end-

point γ(t0). We will now show that the horizontal and vertical compo-
nents of v̂ = v +X are

v̂H = vH −
(
CR

1 |γ1
(
vH(t1)

)
− CL

1 |γ0
(
vH(t0)

)
+

∫ t1

t0

B1(v
H(t), γ′(t))dt

)
h

v̂V = vV +X +
(
CR

1 |γ1
(
vH(t1)

)
− CL

1 |γ0
(
vH(t0)

)
+

∫ t1

t0

B1(v
H(t), γ′(t))dt

)
h,

(5.21)

respectively, where, as always, Zh ∈ ThH is the result of applying the
derivative of the right translation map H //H : x 7→ xh to Z ∈ L(H).
Our objective now is to show that v̂H lies in the horizontal subspace,

v̂V in the vertical subspace.
The relation (5.17) shows that when Ω is applied to a vertical vector,

which, by definition, is of the form v = r(γ,h)(Y1 + Z1) then the value
obtained is Y1 + Z1; hence if this is 0 then v itself is 0. Thus the only
vertical vector which is also horizontal is just the zero vector. Thus the
sum in (5.18) is indeed a direct sum.
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Inserting (5.21) in the expression for Ω given in (5.5) we get

Ad(h)Ωγ,h(v̂
H)

= ωγ(v
H) + CR

1 |γ1
(
vH(t1)

)
− CL

1 |γ0
(
vH(t0)

)
+

∫ t1

t0

B1(v
H(t), γ′(t))dt

−
(
CR

1 |γ1
(
vH(t1)

)
− CL

1 |γ0
(
vH(t0)

)
+

∫ t1

t0

B1(v
H(t), γ′(t))dt

)

= 0.
(5.22)

The vector vV, which is the ω-vertical part of v, is given by

vV = γZ, (5.23)

where

Z = ωγ(v)

(as we have discussed earlier in (3.8)). Applying Ωγ,h to vV we have

Ωγ,h(v̂
V)

= Ad(h−1)
[
Z +Xh−1 + CR

1 |γ1
(
vH(t1)

)
− CL

1 |γ0
(
vH(t0)

)

+

∫ t1

t0

B1(v
H(t), γ′(t))dt

]
.

(5.24)

We can write the right hand side of (5.24) as a sum of a vector in
L(H) and a vector in L(G) on using the observation, made earlier after
(4.31), that

(
1− Ad(h−1)

)
Z is in L(H). Thus we have

Ωγ,h(v̂
V) =

(
Ad(h−1)− 1

)
Z

+ h−1
[
X +

(
CR

1 |γ1
(
vH(t1)

)
− CL

1 |γ0
(
vH(t0)

)

+

∫ t1

t0

B1(v
H(t), γ′(t))dt

)
h

]
+ Z.

(5.25)

Now we recall from (4.31) that the derivative of the orbit map

H ⋊α G // Pdec
Ā P : (h1, g1) 7→ (γ, h)h1g1

at the identity element (e, e) ∈ H ⋊α G is given by

r(γ,h) : L(H ⋊α G) // T(γ,h)P
dec
Ā P

Y1 + Z1 7→ γZ1 + h
(
Y1 +

(
1−Ad(h−1)

)
Z1

)
.

(5.26)
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Applying this to Ωγ,h(v̂
V) as given above we obtain

r(γ,h)

(
Ωγ,h(v̂

V)
)

= γZ + h
(
Ad(h−1)− 1

)
Z

+

[
X +

(
CR

1 |γ1
(
vH(t1)

)
− CL

1 |γ0
(
vH(t0)

)
+

∫ t1

t0

B1(v
H(t), γ′(t))dt

)
h

]

+ h
(
1− Ad(h−1)

)
Z

= γZ +
[
X +

(
CR

1 |γ1
(
vH(t1)

)
− CL

1 |γ0
(
vH(t0)

)

+

∫ t1

t0

B1(v
H(t), γ′(t))dt

)
h

]
,

(5.27)

which we recognize to be v̂V as given in (5.21). Thus,

v̂V = r(γ,h)

(
Ωγ,h(v̂

V)
)

lies in the vertical subspace V(γ,h)P
dec
Ā
P . �

6. Horizontal lifts of paths on decorated bundles

We work with the framework from the preceding sections, with a
connection Ā on a principal G-bundle π : P //M , and a Lie crossed
module (G,H, α, τ); as noted before, we shall only use the semidirect
product H ⋊α G and not τ at this stage. There is then a principal
G-bundle PĀP // PM , where the elements of PĀP are Ā-horizontal
paths on P . We have introduced a connection ω on PĀP //PM , and
a connection Ω on the principal H ⋊α G-bundle Pdec

Ā
P // PM . The

elements of Pdec
Ā
P are of the form (γ, h), where γ ∈ PĀP and h ∈ H .

Our goal in this section is to determine parallel-transport, illustrated
in Figure 3, by the connection Ω (in the figure k encodes the parallel
transport multiplier).

6.1. Paths on the path space. We consider a path

Γ : [s0, s1] // PM : s 7→ Γs

where each Γs is a C
∞ path [t0, t1] //M , for some t0 < t1. We assume

that Γ is smooth in the sense that

[t0, t1]× [s0, s1] //M : (t, s) 7→ Γ(t, s) = Γs(t) (6.1)

is C∞. There are some additional technical requirements we impose in
order to ensure that composition of paths of paths produces a path of
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Γ0 ∈ PM
Γ1 ∈ PM

(Γ̄0, h0) ∈ PĀP ×H

M

(Γ̄1, h1) ∈ PĀP ×H

(Γ̄, h, k)

Γ : [s0, s1] // PM

Figure 3. Parallel transport of decorated paths

paths of the same nature. To this end we assume that for the mapping
Γ there exists an ǫ > 0 such that for each fixed s the point

Γs(t)

remains constant when t is within distance ǫ of t0 or t1, and for each
fixed t ∈ [t0, t1] the point Γs(t) remains constant when s is within
distance ǫ of s0 or s1. Furthermore, we identify Γ with the mapping

Γ−v : ([t0, t1]× [s0, s1]) + v //M : (t, s) 7→ Γ
(
(t, s)− v

)
,

for any fixed v ∈ R
2. More precisely, identification means that we form

a quotient space P2(M), where Γ and Γ−v correspond to the same
element.

6.2. The Ω-horizontal lift of a path on PM . Our goal is to deter-
mine the Ω-horizontal lift of s 7→ Γs, with a given initial point

(Γ̃s0 , hs0) ∈ Pdec
Ā P

where

π ◦ Γ̃s0 = Γs0.

To this end let

[s0, s1] // PĀP : s 7→ Γ̃s (6.2)

be the ω-horizontal lift of the path s 7→ Γs, with initial point Γ̃s0.
(Recall that ω is a connection on PĀP and in subsection 3.5 we have
shown the existence of ω-horizontal lifts.) Next let

s 7→ hs (6.3)
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be the solution of the differential equation

ḣsh
−1
s = −

[
CR

1

(
∂sΓ̃s(t1)

)
− CL

1

(
∂sΓ̃s(t0)

)
+

∫ t1

t0

B1

(
∂sΓ̃s(t), ∂tΓ̃s(t)

)
dt

]

(6.4)
with an initial value hs0 = e ∈ H .

We recall our assumptions that CL,R
1 and B1 take values in the Lie

algebra L(H) ⊂ L(H ⋊α G). As a result, hs lies in H .
We note that

ḣsh
−1
s = −

[
CR

1

(
∂sΓ̃s(t1)

)
− CL

1

(
∂sΓ̃s(t0)

)
+

∫ t1

t0

B1

(
∂sΓ̃s(t), ∂tΓ̃s(t)

)
dt

]
.

(6.5)

Let us recall from (5.5) the connection form Ω on Pdec
Ā
P given by:

Ωγ,h(v +X)

= Ad(h−1)
[
ωγ(v) + CR

1

(
∂sΓ̃s(t1)

)
− CL

1

(
∂sΓ̃s(t0)

)

+

∫ t1

t0

B1|γ(t0)(v(t), γ
′(t))dt+Xh−1

]
,

(6.6)

where v + X ∈ T(γ,h)P
dec
Ā
P , with v a vector field along the path γ :

[t0, t1] // P belong to PĀP and X ∈ ThH , the 1-form ω is as defined
in (3.2):

ωγ(v) := Aγ(t0)(v(t0))+C
R
0 (v(t1))−C

L
0 (v(t0))+

∫ t1

t0

B0|γ(t0)
(
v(t), γ′(t)

)
dt.

(6.7)

Proposition 6.1. Suppose (G,H, α, τ) is a Lie crossed module and Ā
is a connection on a principal G-bundle π : P //M . We have then
as above the bundle PĀP //PM of Ā-horizontal paths on M over the
space PM of paths on M , and the decorated bundle

Pdec
Ā P = PĀP ×H // PM,

equipped with a connection form Ω given above in (6.6), involving the

forms CR,L
1 and B1 that take values in L(H). Then the path

[s0, s1] // Pdec
Ā P : s 7→ (Γ̃s, hs) (6.8)

is Ω-horizontal if and only if s 7→ Γ̃s is an ω-horizontal path on PĀP
and s 7→ hs satisfies the differential equation

ḣsh
−1
s = −CR

1

(
∂sΓ̃s(t1)

)
+ CL

1

(
∂sΓ̃s(t0)

)
−

∫ t1

t0

B1

(
∂sΓ̃s(t), ∂tΓ̃s(t)

)
dt.

(6.9)
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Proof. Evaluating Ω on the tangent vector (field)

∂s(Γ̃s, hs) =
(
∂sΓ̃s, ḣs

)
∈ T(Γ̃s,hs)

Pdec
Ā P,

we have

Ω(Γ̃s ,hs)
∂s(Γ̃s, hs) = Ad(h−1

s )ω
(
∂sΓ̃s

)
+Ad(h−1

s )
[
ḣsh

−1
s

+CR
1

(
∂sΓ̃s(t1)

)
− CL

1

(
∂sΓ̃s(t0)

)
+

∫ t1

t0

B1

(
∂sΓ̃s(t), ∂tΓ̃s(t)

)
dt
)]

.

(6.10)

Here, on the right, the first term is in L(G) and the second term is in
L(H). The entire expression is 0 if and only if each of these terms is 0.

This is equivalent to s 7→ Γ̃s being ω-horizontal and s 7→ hs satisfying
the differential equation (6.9). �

7. Curvature conditions for reduction to holonomy

bundle

We continue to work in the framework of the decorated bundle Pdec
Ā
P .

Let C1 be an L(H)-valued 1-form on P that is equivariant and vanishes
on vertical vectors. Then we can associate to each γ ∈ PĀP a special
decoration h∗(γ) that is given by

h∗(γ) = hγ(t1), (7.1)

where [t0, t1] //H : t 7→ hγ̃(t) is the solution of

h′γ(t)hγ(t)
−1 = −C1

(
γ′(t)

)
, (7.2)

with initial value hγ(t0) = e.

Then we have a sub-bundle P
dec

Ā P of Pdec
Ā
P specified by:

P
dec

Ā P := {
(
γ, h∗(γ)−1

)
| γ ∈ PĀP} ⊂ Pdec

Ā P. (7.3)

More precisely,

P
dec

Ā P // PM :
(
γ, h∗(γ)−1

)
7→ π ◦ γ (7.4)

is a principal G-bundle. Henceforth, in this section we take the con-
nection A to be the same as the connection Ā:

A = Ā.

Our goal in this section is to determine a type of connection Ω̂ on

Pdec
A P that reduces to a connection on the sub-bundle P

dec

A P . Sub-
section 7.4 serves as a technical appendix to this section and presents
some of the background computations for the proof of the main result
Proposition 7.1. Later in subsection 7.5 we present a description of the
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notion of a holonomy bundle and a result of Ambrose and Singer [2],
that form a motivational background for our investigations.

7.1. Statement of the result. Let us first summarize the notation
and framework.
Let A be a connection form on a principal G-bundle π : P //M ,

and suppose (G,H, α, τ) is a Lie crossed module. (As noted before, we
will use only the semidirect products here, and not the target map τ ,
which is useful in the categorical framework.) Let C be an L(H⋊αG)-
valued 1-form on P that vanishes on vertical vectors and satisfies the
equivariance

C|pg(vg) = Ad(g−1)C|p(v) (7.5)

for all p ∈ P , v ∈ TpP and g ∈ H . Here, as usual, on the right we take
Ad(g−1) to be an operator on L(H ⋊α G). We decompose C into its
component in L(H) and the component in L(G):

C = C0 + C1, (7.6)

where C0 takes values in L(G) and C1 in L(H).
Let B be an L(H ⋊α G)-valued 1-form on P that is equivariant

analogously to C and vanishes when contracted on any vertical vector;
we write

B = B0 +B1, (7.7)

where B0 is the L(G)-component of B and B1 is the L(H)-component.
Let PAP be, as before, the path space of A-horizontal paths γ on P ,

and PM the path space for M . On the decorated bundle

Pdec
A P

def
= PAP ×H // PM

consider the connection form Ω̂ given by

Ω̂γ,h(v +X)

= Ad(h−1)
[
Aγ(t0)

(
v(t0)

)
− Ad

(
g−1
γ(t1)

)
C|γ(t1)

(
v(t1)

)
+ C|γ(t0)

(
v(t0)

)

+

∫ t1

t0

Ad
(
gγ(t)

−1
)
Bγ(t)(v(t), γ

′(t)
)
dt+Xh−1

]

(7.8)

for all γ ∈ PAP , h ∈ H , v ∈ TγPĀP and X ∈ ThH . (Let us note that
in relation to our previous notation, CR = CL = −C.) In (7.8) the
element gγ(t) ∈ G is given by

gγ(t) = τ
(
hγ(t)

)
, (7.9)

where hγ(t) ∈ H is as given by the differential equation (7.2).
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The connection Ω̂ can be obtained as a pullback T ∗Ω, where Ω is the
connection given in (5.4) on the decorated bundle and T is the change
of base connection map discussed in subsection 2.6 from the connection
A to the connection A + τC1; however, we leave this as a remark and
omit verification.
Suppose that B1 and C1 are related by

B1 = dC1 +
1

2
[C1, C1]. (7.10)

Consider a path [s0, s1] // PM : s 7→ Γs given by a C∞ map

[t0, t1]× [s0, s1] //M : (t, s) 7→ Γs(t) = Γ(t, s)

and let γ ∈ PAP be an Ā-horizontal lift of the initial path Γs0. Let
h∗(γ) be the value hs0(t1) where [t0, t1] //H : t 7→ hs(t) is the solution
of the equation

h′s(t) + C1

(
γ′(t)

)
hs(t) = 0 for all t ∈ [t0, t1];

hs(t0) = e.
(7.11)

We can conjugate by any g ∈ G to see that the path

[t0, t1] //G : t 7→ hs;g(t)
def
= g−1hs(t)g

satisfies

h′s;g(t) + g−1C1

(
γ ′(t)

)
g hs;g(t) = 0 for all t ∈ [t0, t1];

hs;g(t0) = e.
(7.12)

By the equivariance of C, and hence of the L(H)-component C1, given
by (7.5), the first equation in (7.12) is equivalent to

h′s;g(t) + C1

(
(γg)′(t)

)
hs;g(t) = 0. (7.13)

Thus, by uniqueness of the solution of such differential equations,

hs;g(t) = g−1hs(t)g for all (t, s) ∈ [t0, t1]× [s0, s1]. (7.14)

Let

h∗(γ) = hγ(t1)

g∗(γ) = τ
(
h∗(γ)

)
.

(7.15)

We can now state the main result of this section.

Proposition 7.1. With notation and framework as above, suppose the
relation (7.10) holds. Then parallel transport by the connection Ω̂ car-
ries elements of the form

(
γ, h∗(γ)−1

)
to elements of the same form.

The remainder of this section is devoted to an understanding and
proof of this result.
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7.2. Horizontal lifts by ω̂ and Ω̂. Consider a path s 7→ Γs on PM
specified by a C∞ map

Γ : [t0, t1]× [s0, s1] //M : (t, s) 7→ Γ(t, s) = Γs(t)

and an A-horizontal lift

Γ0 : [t0, t1] // P : t 7→ Γ0(t)

of the initial path Γs0 on M . Now let

[t0, t1]× [s0, s1] // P : (t, s) 7→ Γ̂s(t)

be the ω̂-horizontal lift of the path s 7→ Γs, with initial value being the
given path Γ0:

Γ̂s0 = Γ0.

We follow the strategy used to study ω-horizontal lifts, as in (3.17).

We compare Γ̂ to another path

Γ : [s0, s1] // PAP : s 7→ Γg

that is constructible in terms of just the connection for A and the initial
path Γ0. We define

Γ : [t0, t1]× [s0, s1] // P : (t, s) 7→ Γs(t)

to be the C∞ map for which (i) each path Γs is Ā-horizontal, (ii) the
initial points s 7→ Γs(t0) constitute a path

[t0, t1] // P : t 7→ Γs0(t)

that is horizontal with respect to the connection for A, and (iii) the
initial path Γs0 is the given initial path Γ0 ∈ PAP .
Then by (3.20) (applied to the connection form ω̂) it follows that the

path Γ̂s is obtained from Γs by translation with an element as ∈ G:

Γ̂s = Γsas,

where s 7→ as satisfies the differential equation

ȧsa
−1
s = Ad

(
g∗(Γs(t1))

−1
)
C0

(
∂tΓs(t1)

)
− C0

(
∂tΓs(t0)

)

−

∫ t1

t0

Ad
(
g∗(Γs(t))

−1
)
B0

(
∂sΓs(t), ∂tΓs(t)

)
dt.

(7.16)

with initial value as0 = e. (In (3.20) there is a first term on the right
that is absent here because A = Ā in this context.) Note that this
differential equation is for a path on the group G.
Next, by Proposition 6.1 applies to Ω̂, the path

[s0, s1] // Pdec
A P : s 7→ (Γ̂s, xs)
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is Ω̂-horizontal if and only if the path s 7→ xs ∈ H satisfies the differ-
ential equation

ẋsx
−1
s = Ad

(
g∗(Γ̂s(t1))

−1
)
C1

(
∂sΓ̂s(t1)

)
− C1

(
∂sΓ̂s(t0)

)

−

∫ t1

t0

Ad
(
g∗(Γ̂s(t))

−1
)
B1

(
∂sΓ̂s(t), ∂tΓ̂s(t)

)
dt.

(7.17)

This differential equation, for the decoration element, is for a path on
the group H . We can also verify (7.17) directly by focusing on the

L(H)-component of the expression for Ω̂ given in (7.8) applied to the

vector (∂sΓ̂s, ḣs), the result being equal to 0.
From the second relation bwteen α and τ that have noted in (4.2)

we have

Ad
(
τ(h)

)
X = α

(
τ(h)

)
X = Ad(h)X (7.18)

for all h ∈ H and X ∈ L(H). From this we see that in the right side
of (7.17) we can replace each g∗ by an h∗, and so

ẋsx
−1
s = C1

(
∂sΓ̂s(t0)

)
− Ad

(
h∗(Γ̂s(t1))

−1
)
C1

(
∂sΓ̂s(t1)

)

−

∫ t1

t0

Ad
(
h∗(Γ̂s(t))

−1
)
B1

(
∂sΓ̂s(t), ∂tΓ̂s(t)

)
dt.

(7.19)

7.3. Comparison with variation of parallel transport. We con-
tinue with the framework as above. For fixed s ∈ [s0, s1], consider the
path

[t0, t1] //H : t 7→ hs(t)

that satisfies

h′s(t) + C1

(
Γ̂′
s(t)

)
hs(t) = 0

hs(t0) = e.
(7.20)

We use the notation

h∗(Γ̂s) = hs(t1). (7.21)

Our objective is to show that the path

[s0, s1] // P
dec

A P : s 7→
(
Γ̂s, h

∗(Γ̂s)
−1
)

(7.22)

is Ω̂-horizontal. Let

ys(t)
def
= hs(t)

−1. (7.23)

Thus, we need to show that

[s0, s1] // P
dec

A P : s 7→
(
Γ̂s, ys(t1)

)
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is Ω̂-horizontal. Expressing equation (7.20) in terms of ys we have:

ys(t)
−1y′s(t) = hs(t)

(
−hs(t)

−1h′s(t)hs(t)
−1
)

= −h′s(t)hs(t)
−1

= C1

(
Γ̂′

s(t)
)
.

(7.24)

Then, as we show below in (7.60),

ẏs(t1)ys(t)
−1 − ẏs(t0)ys(t0)

−1

= −

∫ t1

t0

ys(u)
(
dĈ1 +

1

2
[Ĉ1, Ĉ1]

)
(∂t, ∂s)ys(u)

−1du

+ ys(t1)C1

(
∂sΓ̂s(t1)

)
ys(t1)

−1 − ys(t0)C1

(
∂sΓ̂s(t0)

)
ys(t0)

−1,

(7.25)

where
Ĉ1 = Γ̂∗C1. (7.26)

Since ys(t0) is held fixed at e we have then, on using (7.25),

ẏs(t1)ys(t)
−1 = −

∫ t1

t0

ys(u)
(
dĈ1 +

1

2
[Ĉ1, Ĉ1]

)
(∂t, ∂s)ys(u)

−1du

+ ys(t1)C1(∂sΓ̂s(t1)
)
ys(t1)

−1 − C1

(
∂sΓ̂s(t0)

)
.

(7.27)

Comparing with the equation for Ω̂-parallel transport (7.17) we see
that the two equations agree if

B1 = dC1 +
1

2
[C1, C1]. (7.28)

Thus the path (7.22) is Ω̂-horizontal, and the proof of Proposition
7.1 is complete.

7.4. Variation of differential equations. In this subsection we work
through the details of the computation that leads to the equation (7.27)
which was central to the proof of Proposition 7.1.
Consider the differential equation

b(t)−1b′(t) = C
(
γ′(t)

)
(7.29)

for t ∈ [0, 1], where γ ∈ PAP . We shall determine how fast the terminal
point b(1) changes when we change the path γ.
Our strategy is to consider the family of differential equations

bs(t)
−1b′s(t) = C

(
Γ̂′
s(t)

)
(7.30)

where s ∈ [0, 1] and t ∈ [0, 1], and the prime is derivative with respect
to t. Here

Γ̂ : [0, 1]× [0, 1] // P : (t, s) 7→ Γ̂s(t) (7.31)
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is a smooth map. We think of s as a variational parameter and our
goal is to compute how fast bs(1) changes with s.
Let us denote the right hand side by Es(t) ∈ L(G):

Es(t) = C
(
Γ̂′

s(t)
)
. (7.32)

Thus our differential equation is

bs(t)
−1b′s(t) = Es(t). (7.33)

Now let
Ds(t) = ḃs(t)bs(t)

−1, (7.34)

where
ḃs(t) = ∂sbs(t) (7.35)

is the derivative which contains the information we are ultimately seek-
ing. Our goal is to compute Ds(t).
As always, we will the s-derivative by a dot over the letter:

ẋs(t) = ∂sxs(t). (7.36)

Our strategy is to compute D′
s(t) = ∂tDs(t) and then obtain Ds(t)

by integrating:

Ds(t) =

∫ t

0

D′

s(u) du+Ds(0).

So now let us compute the derivative D′
s(t). From (7.34 ) we have

D′

s(t) = −ḃs(t)bs(t)
−1b′s(t)bs(t)

−1 +
(
∂s∂tbs(t)

)
bs(t)

−1 (7.37)

Now we are going to work out ∂sEs(t), but first let us recall what
Es(t) is:

Es(t) = bs(t)
−1b′s(t). (7.38)

It is important that we have bs(t)
−1 on the left for Es(t) and on the

right for Ds(t). Returning to the calculation, we have:

Ės(t) = bs(t)
−1∂s∂tbs(t)− bs(t)

−1ḃs(t)bs(t)
−1b′s(t). (7.39)

Comparing with D′
s(t) we see that it is useful to conjugate Ės(t) by

bs(t):

bs(t)Ės(t)bs(t)
−1 =

(
∂2stbs(t)

)
bs(t)

−1 − ḃs(t)bs(t)
−1b′s(t)bs(t)

−1, (7.40)

which is exactly D′
s(t)! Thus:

D′

s(t) = bs(t)Ės(t)bs(t)
−1. (7.41)

Integrating, we obtain

Ds(t) = Ds(0) +

∫ t

0

bs(u)Ės(u)bs(u)
−1 du. (7.42)
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This is in itself a nice formula for Ds(t) = ḃs(t)bs(t)
−1, the rate of

change of bs(t) when s is varied.
Let us formally summarize what we have proved so far as a self-

contained result.

Proposition 7.2. Let H be a Lie group and suppose

[t0, t1]× [s0, s1] //H : (t, s) 7→ bs(t)

is a C∞ function. Let

E : [t0, t1]× [s0, s1] // L(H) : (t, s) 7→ Es(t)

be the function given by

Es(t) = bs(t)
−1b′s(t) (7.43)

for all (t, s) ∈ [t0, t1]× [s0, s1]. Then

ḃs(t)bs(t)
−1 = ḃs(t0)bs(t0)

−1 +

∫ t

t0

Ad
(
bs(u)

)
Ės(u) du (7.44)

for all (t, s) ∈ [t0, t1] × [s0, s1], with a dot over a letter denoting the
derivative with respect to s.

Results of this type are sometimes called ‘non-abelian Stokes formu-
las.’
Now let us return to the geometric context, with notation as before.

Thus, as in (7.32), Es(t) is given by:

Es(t) = C
(
∂tΓ̂s(t)

)
. (7.45)

We can write this as
Es(t) = Ĉ(∂t), (7.46)

where Ĉ is the pull back

Ĉ = Γ̂∗C, (7.47)

which is a 1-form on [0, 1]× [0, 1]. Let us now use the formula for the
exterior differential of a 1-form:

dĈ(v, w) = v[Ĉ(w)]− w[Ĉ(v)]− Ĉ([v, w]), (7.48)

for any smooth vector fields v and w. Then

dĈ(∂t, ∂s) = ∂t

(
Ĉ(∂s)

)
− ∂s

(
Ĉ(∂t)

)
− Ĉ

(
[∂t, ∂s]

)
. (7.49)

The Lie bracket of the coordinate vector fields ∂t and ∂s appearing on
the right is 0. So we have

Ės(t) = ∂s

[
Ĉ(∂t)

]
= ∂t

[
Ĉ(∂s)

]
− dĈ(∂t, ∂s). (7.50)
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To keep the notation simple let us write

Fs(t) = Ĉ(t,s)(∂s). (7.51)

Then
Ės(t) = −dĈ(∂t, ∂s) + ∂tFs(t). (7.52)

Looking back at D′
s(t) as given in (7.41) we compute

D′
s(t) = bs(t)

(
−dĈ(∂t, ∂s) + F ′

s(t)
)
bs(t)

−1. (7.53)

We focus for now on the second term and compute:

bs(t)F
′

s(t)bs(t)
−1

= ∂t

(
bs(t)Fs(t)bs(t)

−1
)
− b′s(t)Fs(t)bs(t)

−1 − bs(t)Fs(t)∂t
(
bs(t)

−1
)

= ∂t

(
bs(t)Fs(t)bs(t)

−1
)
− bs(t)Es(t)Fs(t)bs(t)

−1 + bs(t)Fs(t)Es(t)bs(t)
−1

= ∂t

(
bs(t)Fs(t)bs(t)

−1
)
− bs(t)[Es(t), Fs(t)]bs(t)

−1

(7.54)

Let us analyze the Lie bracket term

[Es(t), Fs(t)] = [Ĉ(∂t), Ĉ(∂s)] (7.55)

The 2-form [Ĉ, Ĉ] is defined by

[Ĉ, Ĉ](v, w) = [Ĉ(v), Ĉ(w)]− [Ĉ(w), Ĉ(v)] = 2[Ĉ(v), Ĉ(w)]. (7.56)

There is also the related notation

(Ĉ ∧ Ĉ)(v, w) = [Ĉ(v), Ĉ(w)], (7.57)

which is directly meaningful if Ĉ takes values in a matrix Lie algebra.
Hence

[Es(t), Fs(t)] =
1

2
[Ĉ, Ĉ](∂t, ∂s). (7.58)

Now glancing back a few steps at (7.53) we see that

D′
s(t) = −bs(t)dĈ(∂t, ∂s)bs(t)

−1 + ∂t

(
bs(t)Fs(t)bs(t)

−1
)

− bs(t)
1

2
[Ĉ, Ĉ](∂t, ∂s)bs(t)

−1.
(7.59)

Integrating, and recalling from (7.34) thatDs(t) is ḃs(t)bs(t)
−1, we have

ḃs(t)bs(t)
−1 − ḃs(0)bs(0)

−1 = −

∫ t

0

bs(u)
(
dĈ +

1

2
[Ĉ, Ĉ]

)
(∂t, ∂s)bs(u)

−1du

+ bs(t)Fs(t)bs(t)
−1 − bs(0)Fs(0)bs(0)

−1,

(7.60)
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wherein, as before, Fs(t) = Ĉ(t,s)(∂s).

7.5. The holonomy bundle. For a principal G-bundle π : P //M

equipped with a connection A we denote by PA(u) the set of all terminal
points of A-horizontal paths that initiate at any given point u ∈ P . The
holonomy group HA(u) consists of all g ∈ G for which ug ∈ PA(u). If
γpu is an A-horizontal path on P initiating at u and terminating at
p ∈ PA(u) then γ

p
ug is also A-horizontal, initiating at the point ug and

terminating at pg; if g ∈ HA(u) then we can choose an A-horizontal
path γugu from u to ug, and the composite (γpug)◦γ

ug
u is an A-horizontal

path from u to the point pg. Thus PA(u) is mapped into itself by
the right action of the holonomy group HA(u) ⊂ G. In this way the
structure

π : PA(u) //M : p 7→ π(p) (7.61)

is a principal HA(u)-bundle over M . The connection A reduces to a
connection on this bundle. A celebrated result of Ambrose and Singer
[2] relates the Lie algebra of the holonomy group to the Lie subalgebra
of L(G) spanned by elements FA(v, w), where FA is the curvature
of A and v and w run over all vectors in TpP with p running over the
holonomy bundle PA(u). (Since composition of paths is crucial in these
discussions, such as even to see that HA(u) is a subgroup, the definition
of the holonomy bundle should involve a family of paths that is closed
under composition; in fact we may use just the type of paths we have
been using, C∞ and constant near the initial and final times.) In our

context, for the connection Ω̂ on the bundle Pdec
A P , Proposition 7.1

says that the holonomy subbundle of any point in P
dec

A P is contained
inside this subbundle.

8. Differential calculus on path spaces

We have avoided putting a manifold structure on the spaces of paths
with which we have worked. Such a structure is not logically needed
for any of our constructions and is useful only as an idea. It is stan-
dard practice in the theory of stochastic processes (which is concerned
with integration on path spaces) to work primarily with notions of dif-
ferentiation and integration defined in the specific context of path or
function spaces rather than on any abstract infinite dimensional mani-
fold. Although an abstract theory of such integration was constructed
(Kuo [14]) it has been found to be more useful to define geometric,
differential and measure theoretic notions directly on path spaces. Let
us then summarize here the differential notions we need for our work.
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Consider a set X whose points are paths on a given manifold M .
In this context we require that the paths be C∞, and there might be
additional restrictions placed.
By a tangent vector v to X at a point in X given by a path γ :

[t0, t1] //M we mean a C∞ vector field v : [t0, t1] //TM along γ that
is constant near t0 and near t1. For example, there is the special vector
γ′ ∈ TγX which is just the tangent vector field along γ (the tangent
vector field along γ is zero near the initial and final times). We denote
the set of all vectors tangent to X at γ by TγX and call this the tangent
space to X at γ. This is clearly a vector space under pointwise addition
and scaling.
If v is a C∞ vector field on an open subset of M and γ ∈ P(M) lies

entirely in U then we obtain a vector field vγ along γ given by

vγ(t) = v
(
γ(t)

)
for all t ∈ [t0, t1].

Then vγ is C∞ and constant near t0 and t1, and hence is a vector in
the tangent space TγP(M).
A k-form Θ on X is an assignment to each γ ∈ X an alternating

multilinear mapping

(TγX)k // R : (v1, . . . , vk) 7→ Θγ(v1, . . . , vk).

A typical example of interest is a k-form I(θ) that arises from a k-form
θ on M by the specification:

I(θ)γ(v1, . . . , vk) =

∫ t1

t0

θγ(t)
(
v1(t), . . . , vk(t)

)
dt. (8.1)

Many forms on X of interest to us have some additional features: for
example, they are invariant under a class of reparametrizations of the
paths. Moreover, many of the forms we use vanish when contracted on
the tangent vector field. As an example consider, with I(θ) as above,
the (k − 1)-form on X given by:

(iγ′I(θ)γ)(v1, . . . , vk−1) =

∫ t1

t0

θγ(t)
(
γ′(t), v1(t), . . . , vk−1(t)

)
dt. (8.2)

This form vanishes when one of the vectors vj happens to be γ′. The
form iγ′I(θ)γ is the Chen integral

∫

γ

θ
def
= iγ′I(θ)γ. (8.3)

Intuitively we think of X as a bundle over a quotient space [X ] after
quotienting by a group of reparametrizations. Of interest then are
forms on X that vanish along the orbital directions and are invariant
under translations (reparametrizations) by the action of the structure
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group; thus these correspond to forms on [X ] pulled back up to the
space X .
Now let

Γ : [t0, t1]× [s0, s1] //M : (t, s) // Γs(t)

be a C∞ map which is stationary near the boundary in the following
sense: there is an ǫ > 0 such that for each fixed s the point Γs(t) is
the same when t is at distance < ǫ from {t0, t1}, and for each fixed
t the point Γs(t) is the same when s is at distance < ǫ from {s0, s1}.
Thus each Γs is in P(M) as defined in (2.1). Then there is for each
s ∈ [s0, s1] the tangent vector Γ̇s ∈ TΓs

P(M) given by

Γ̇s(t) = ∂sΓs(t) for all t ∈ [t0, t1]. (8.4)

Other differential geometric notions such as bundles and connections
over spaces of paths can be defined by natural extension of the usual
definitions on finite dimensional spaces.
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